An Efficient and Accurate Numerical Method of Stress Intensity Factors Calculation of a Branched Crack

نویسنده

  • Xiangqiao Yan
چکیده

Based on the analytical solution of Crouch to the problem of a constant discontinuity in displacement over a finite line segment in an infinite elastic solid, in the present paper, the crack-tip displacement discontinuity elements, which can be classified as the left and the right crack-tip elements, are presented to model the singularity of stress near a crack tip. Furthermore, the crack-tip elements together with the constant displacement discontinuity elements presented by Crouch and Starfied are used to develop a numerical approach for calculating the stress intensity factors (SIFs) of general plane cracks. In the boundary element implementation, the left or the right crack-tip element is placed locally at the corresponding left or right crack tip on top of the constant displacement discontinuity elements that cover the entire crack surface and the other boundaries. The method is called the hybrid displacement discontinuity method (HDDM). Numerical examples are given and compared with the available solutions. It can be found that the numerical approach is simple, yet very accurate for calculating the SIFs of branched cracks. As a new example, cracks emanating from a rhombus hole in an infinite plate under biaxial loads are taken into consideration. The numerical results indicate the efficiency of the present numerical approach and can reveal the effect of the biaxial load on the SIFs. In addition, the hybrid displacement discontinuity method together with the maximum circumferential stress criterion (Erdogan and Sih) becomes a very effective numerical approach for simulating the fatigue crack propagation process in plane elastic bodies under mixed-mode conditions. In the numerical simulation, for each increment of crack extension, remeshing of existing boundaries is not required because of an intrinsic feature of the HDDM. Crack propagation is simulated by adding new boundary elements on the incremental crack extension to the previous crack boundaries. At the same time, the element characters of some related elements are adjusted according to the manner in which the boundary element method is implemented. @DOI: 10.1115/1.1796449#

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of different numerical methods for calculating stress intensity factors in analysis of fractured structures

In this research, an efficient Galerkin Finite Volume Method (GFVM) along with the h–refinement adaptive process and post–processing error estimation analysis is presented for fracture analysis. The adaptive strategy is used to produce more accurate solution with the least computational cost. To investigate the accuracy and efficiency of the developed model, the GFVM is compared with two versio...

متن کامل

Numerical Investigation of the Mixed-Mode Stress Intensity Factors in FGMs Considering the Effect of Graded Poisson’s Ratio

In this paper, the interface crack of two non-homogenous functionally graded materials is studied. Subsequently, with employing the displacement method for fracture of mixed-mode stress intensity factors, the continuous variation of material properties are calculated. In this investigation, the displacements are derived with employing of the functional graded material programming and analysis o...

متن کامل

Thermoelastic Fracture Parameters for Anisotropic Plates

This paper deals with the determination of the effect of varying material properties on the value of the stress intensity factors, KI and KII, for anisotropic plates containing cracks and subjected to a temperature change. Problems involving cracks and body forces, as well as thermal loads are analysed. The quadratic isoperimetric element formulation is utilized, and SIFs may be directly obtain...

متن کامل

Mixed-Mode Stress Intensity Factors for Surface Cracks in Functionally Graded Materials Using Enriched Finite Elements

Three-dimensional enriched finite elements are used to compute mixed-mode stress intensity factors (SIFs) for three-dimensional cracks in elastic functionally graded materials (FGMs) that are subject to general mixed-mode loading. The method, which advantageously does not require special mesh configuration/modifications and post-processing of finite element results, is an enhancement of previou...

متن کامل

Dynamic Fracture Analysis Using an Uncoupled Arbitrary Lagrangian Eulerian Finite Element Formulation

This paper deals with the implementation of an efficient Arbitrary Lagrangian Eulerian (ALE) formulation for the three dimensional finite element modeling of mode I self-similar dynamic fracture process. Contrary to the remeshing technique, the presented algorithm can continuously advance the crack with the one mesh topology. The uncoupled approach is employed to treat the equations. So, each t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005